47,606 research outputs found

    Chirality Dependence of the KK-Momentum Dark Excitons in Carbon Nanotubes

    Full text link
    Using a collection of twelve semiconducting carbon nanotube samples, each highly enriched in a single chirality, we study the chirality dependence of the KK-momentum dark singlet exciton using phonon sideband optical spectroscopy. Measurements of bright absorptive and emissive sidebands of this finite momentum exciton identify its energy as 20 - 38 meV above the bright singlet exciton, a separation that exhibits systematic dependencies on tube diameter, 2n+m2n+m family, and semiconducting type. We present calculations that explain how chiral angle dependence in this energy separation relates to the Coulomb exchange interaction, and elaborate the dominance of the KA1′K_{A_1'} phonon sidebands over the zone-center phonon sidebands over a wide range of chiralities. The Kataura plot arising from these data is qualitatively well described by theory, but the energy separation between the sidebands shows a larger chiral dependence than predicted. This latter observation may indicate a larger dispersion for the associated phonon near the KK point than expected from finite distance force modeling.Comment: 24 pages, 12 figures, 1 table; slight title change, Figures 1 and 11 added, reference added, presentation improved throughout documen

    Berry phase in a composite system

    Full text link
    The Berry phase in a composite system with only one subsystem being driven has been studied in this Letter. We choose two spin-12\frac 1 2 systems with spin-spin couplings as the composite system, one of the subsystems is driven by a time-dependent magnetic field. We show how the Berry phases depend on the coupling between the two subsystems, and what is the relation between these Berry phases of the whole system and those of the subsystems.Comment: 4 pages, 6 figure

    Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions

    Full text link
    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts, a) electric charges present with all material particles, b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation and c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass, Einstein mass-energy relation, Newton's law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A specific solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200

    Search for Compact Extragalactic Radio Sources Near Massive Star Forming Regions

    Get PDF
    We have used the Very Large Array to search for compact milliarcsecond-size radio sources near methanol masers in high-mass star-forming regions. Such sources are required for Very Long Baseline Interferometry phase-referencing observations. We conducted pointed observations of 234 compact sources found in the NVSS survey and find 92 sources with unresolved components and synchrotron spectral indexes. These sources are likely the cores of AGNs and, thus, good candidates for astrometric calibrators.Comment: 23 pages, lots of figures, accepted in ApJ

    Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime

    Full text link
    It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the JĂ—B\bm{J}\times\bm{B} effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.Comment: 6 pages, 5 figures, Phys. Plasmas (2013) accepte

    Phase Ordering Dynamics of Ď•4\phi^4 Theory with Hamiltonian Equations of Motion

    Full text link
    Phase ordering dynamics of the (2+1)- and (3+1)-dimensional ϕ4\phi^4 theory with Hamiltonian equations of motion is investigated numerically. Dynamic scaling is confirmed. The dynamic exponent zz is different from that of the Ising model with dynamics of model A, while the exponent λ\lambda is the same.Comment: to appear in Int. J. Mod. Phys.

    Tick-borne encephalitis virus induces chemokine RANTES expression via activation of IRF-3 pathway.

    Get PDF
    BACKGROUND: Tick-borne encephalitis virus (TBEV) is one of the most important flaviviruses that targets the central nervous system (CNS) and causes encephalitides in humans. Although neuroinflammatory mechanisms may contribute to brain tissue destruction, the induction pathways and potential roles of specific chemokines in TBEV-mediated neurological disease are poorly understood. METHODS: BALB/c mice were intracerebrally injected with TBEV, followed by evaluation of chemokine and cytokine profiles using protein array analysis. The virus-infected mice were treated with the CC chemokine antagonist Met-RANTES or anti-RANTES mAb to determine the role of RANTES in affecting TBEV-induced neurological disease. The underlying signaling mechanisms were delineated using RANTES promoter luciferase reporter assay, siRNA-mediated knockdown, and pharmacological inhibitors in human brain-derived cell culture models. RESULTS: In a mouse model, pathological features including marked inflammatory cell infiltrates were observed in brain sections, which correlated with a robust up-regulation of RANTES within the brain but not in peripheral tissues and sera. Antagonizing RANTES within CNS extended the survival of mice and reduced accumulation of infiltrating cells in the brain after TBEV infection. Through in vitro studies, we show that virus infection up-regulated RANTES production at both mRNA and protein levels in human brain-derived cell lines and primary progenitor-derived astrocytes. Furthermore, IRF-3 pathway appeared to be essential for TBEV-induced RANTES production. Site mutation of an IRF-3-binding motif abrogated the RANTES promoter activity in virus-infected brain cells. Moreover, IRF-3 was activated upon TBEV infection as evidenced by phosphorylation of TBK1 and IRF-3, while blockade of IRF-3 activation drastically reduced virus-induced RANTES expression. CONCLUSIONS: Our findings together provide insights into the molecular mechanism underlying RANTES production induced by TBEV, highlighting its potential importance in the process of neuroinflammatory responses to TBEV infection
    • …
    corecore